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ABSTRACT: The authenticity, the grape variety, the geographical origin, and the year of vintage of wines produced in Germany
were investigated by 1H NMR spectroscopy in combination with several steps of multivariate data analysis including principal
component analysis (PCA), linear discrimination analysis (LDA), and multivariate analysis of variance (MANOVA) together
with cross-validation (CV) embedded in a Monte Carlo resampling approach (MC) and others. A total of about 600 wines were
selected and carefully collected from five wine-growing areas in the southern and southwestern parts of Germany. Simultaneous
saturation of the resonances of water and ethanol by application of a low-power eight-frequency band irradiation using shaped
pulses allowed for high receiver gain settings and hence optimized signal-to-noise ratios. Correct prediction of classification of the
grape varieties of Pinot noir, Lemberger, Pinot blanc/Pinot gris, Müller-Thurgau, Riesling, and Gewürztraminer of 95% in the
wine panel was achieved. The classification of the vintage of all analyzed wines resulted in correct predictions of 97 and 96%,
respectively, for vintage 2008 (n = 318) and 2009 (n = 265). The geographic origin of all wines from the largest German wine-
producing regions, Rheinpfalz, Rheinhessen, Mosel, Baden, and Württemberg, could be predicted 89% correctly on average. Each
NMR spectrum could be regarded as the individual “fingerprint” of a wine sample, which includes information about variety,
origin, vintage, physiological state, technological treatment, and others.
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■ INTRODUCTION

Nuclear magnetic resonance (NMR) has been used for
structure analysis of pure compounds over decades. The
determination of D/H isotopic ratios by SNIF-NMR in ethanol
produced by fermentation of sugars from C3 or C4 plants is
used for the detection of adulterations in wines and fruit
juices.1−3 First quantitative analysis of contaminants such as
diethylene glycol4 and natural compounds such as sugars, sugar
alcohols, glycerol, and sugar acids5,6 in wine by 13C NMR was
reported in the mid 1980s. The limit of detection was 10 mg/L
for diethylene glycol. Sugar compounds with concentrations
exceeding 1 g/L could be determined directly in wine, whereas
those with concentrations below 1 g/L could be measured in
wine concentrates. Ten to fifteen years later, the extraordinary
potential of NMR has started to be recognized and exploited in
the analysis of mixtures in the context of biofluids,
contaminants,7 foods,8−10 and beverages.11−15 This was
possible due to the availability of high-throughput automation
technology, the increase of sensitivity, and modern water
suppression NMR sequences such that simple proton NMR has
become applicable, providing highly information rich data. Not
only is qualitative information about substances in complex
mixtures such as foods and beverages accessible, but also
quantitative determination of compounds is possible about a
linear range of up to 4−5 magnitudes in only one spectrum.

The most important questions in enology and prevention of
adulterations in wine are grape varieties, geographical origin of
wine, and year of vintage. Many attempts had been made to
analyze the year of vintage, for example, in Montepulciano
d’Abruzzo wines.16 Also, grape varieties were analyzed by
several techniques, for example, using aroma compounds by
principal component analysis (PCA) and linear discriminant
analysis (LDA),17 by combination of mass spectrometry (MS)
based electronic nose (eNose) with visible (VIS) and near-
infrared spectroscopy (NIR),18 and by reduced Fourier
transformed infrared FTIR data (FOSS WineScan FT120) in
combination with PCA/LDA.19 The ultraviolet region has been
used for the discrimination of types of wines from the Spanish
designation of origin La Mancha. PCA and soft independent
modeling of class analogy (SIMCA) were used for developing
classification models (origin, grape variety, aging process).20

The composition of the anthocyanins and their relations in red
wine is a good tool for the differentiation of red wine varieties,
measured by HPLC21,22 as well as proposed by FTIR.23 The
shikimic acid content of wines, especially of Burgundy grapes,

Received: February 20, 2013
Revised: May 13, 2013
Accepted: May 18, 2013
Published: May 18, 2013

Article

pubs.acs.org/JAFC

© 2013 American Chemical Society 5610 dx.doi.org/10.1021/jf400800d | J. Agric. Food Chem. 2013, 61, 5610−5619



allows a prediction of grape variety.24 Red wine cultivars were
differentiated by attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FTIR) of extracts of phenolic
compounds investigated.25

For the characterization of the geographic origins, the
authentification potential of combined isotopic (SNIF NMR)
and trace element analysis (IRMS) was used to predict the
origin of 10 regions and 4 years of production of Bordeaux
wines.26 Also, by combination of SNIF NMR and IRMS (13C,
18O) data Slovenian wines could be discriminated between
coastal and continental regions27 as well as Spanish wine from
the Valencia region.28 By chemical characterization of Italian
wines from different geographical locations in the Apulia region
of southern Italy combined with ICP-MS and 1H NMR, the
wines were divided in three groups by multivariate data analysis
according to their geographical origin.29 High-performance ion
chromatogaphy exclusion (HPICE), ICP-OES, and 1H NMR
measurements were carried out in combination with chemo-
metrics on wine samples from Slovenian and Apulian wine-
growing areas.30 Swiss wines could be differentiated into four
main regions, Valais, Tessin, eastern Switzerland, and western
Switzerland, by means of multi-isotopic analysis (1H, 2H, 18O)
combined with chemometric methods.31 Polyphenol-rich
extracts were used for the classification of Greek wines
according to variety, geographical origin, and vintage using
NMR-based metabolomics.32 Metabolite profiles of white wines
were determined using GC-TOF-MS and 1H NMR.33

Metabolomic studies used 1H NMR in combination with

multivariate statistics also in wine fermentation processes.34−39

Metabolomic analysis of German white wines using NMR
techniques including phenolic extracts correlated to sensory
attributes, varieties, and vintages.40 Red wines of the three
varieties Cabernet Sauvignon, Merlot, and Pinot noir from
various geographical origins from Europe and the United States
were correctly classified in a range of 96% of samples by HPLC-
QTOFMS in combination with several chemometric tools.41

In most of these examples for the differentiation of the
geographical origin, year of vintage, and grape variety,
combinations of chromatographical, spectroscopic, and ana-
lytical data have been used for chemometric statistical analysis.
Nowadays, it is possible to achieve these objectives only by
NMR data and multivariate statistical analysis.42−47 The
information on latent parameters such as grape variety, origin,
and vintage is coded in multivariate patterns of multiple
parameters in the NMR spectra rather coded in single spectrum
markers. Therefore, each NMR spectrum could be regarded as
a personal “fingerprint” of each wine sample including all
information about variety, origin, vintage, physiological state,
technological treatments, and others.
This study combines 1H NMR spectroscopy under an 8-fold

suppression of water and ethanol with several steps of
multivariate statistical analysis to differentiate between several
grape varieties in German wines by targeted as well as
nontargeted analysis. The study for the first time highlights
answers to the most important questions in enology and
prevention of adulterations in wine with a high rate of

Table 1. Experimental Design of All Wine Varieties Measured (Numbers in Parentheses Are EU Database Wines)

BAD WT RHH MSR RHP unknown total

Riesling 86 (10) 8 (2) 16 (16) 24 (24) 9 (9) 6 (1) 149 (62)
Spaẗburgunder (Pinot noir) 58 (11) 9 (6) 1 (1) 4 (4) 2 (2) 5 (2) 79 (26)
Weißburgunder (Pinot blanc) 51 (5) 4 2 (2) 1 (1) 2 (2) 1 61 (10)
Müller-Thurgau 39 4 8 (8) 3 (3) 1 (1) 1 56 (12)
Grauburgunder (Pinot gris) 37 4 (4) 6 (1) 47 (5)
Schwarzriesling (Pinot Meunier) 14 (1) 5 (1) 1 20 (2)
Dornfelder 1 1 6 (6) 4 (4) 5 (5) 2 (1) 19 (16)
Gewürztraminer 8 (4) 6 (2) 1 (1) 15 (7)
Lemberger 5 6 (3) 3 (1) 14 (4)
Silvaner 4 1 7 (7) 2 (2) 14 (9)
Sauvignon blanc 11 1 12
Kerner 1 3 (2) 3 (3) 2 (2) 3 (3) 12 (10)
Auxerrois 9 (2) 1 (1) 1 11 (3)
Chardonnay 7 1 1 (1) 9 (1)
Trollinger 9 (6) 9 (6)
Regent 6 1 (1) 7 (1)
Scheurebe 3 4 (4) 7 (4)
Gutedel 6 (4) 6 (4)
Portugieser 1 2 (2) 2 (2) 5 (4)
Cabernet Sauvignon 3 1 (1) 4 (1)
Müller 4 (4) 4 (4)
Elbling 3 (3) 3 (3)
Muskateller 1 1 2
Nobling 2 2
Bacchus 1 (1) 1 (1) 2 (2)
Traminer 1 1 2
Siegerrebe 1 (1) 1 (1)
Huxelrebe 1 (1) 1 (1)
Merlot 1 1

total 359 (41) 60 (22) 57 (57) 43 (43) 29 (29) 19 (5) 574 (198)
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predictivity in a large amount of German wines: grape variety,
geographical origin of wine, and year of vintage. There are no
or only a few attempts to achieve these goals up to now.

■ MATERIALS AND METHODS
Samples. Authentic samples of pure grape variety wines of the

years of production 2008 and 2009 were taken from wine
manufactures by official wine inspectors of CVUA Karlsruhe in the
Federal State Baden-Württemberg. Samples of wines were given by the
official wine research institutes of Baden-Württemberg, Wine Research
Institute Freiburg, and Wine Research Institute Weinsberg. Micro-
vinified wines according to protocol of EU regulation 2729/2000 for
EU Wine Data Base were collected from official wine research
institutes in Baden-Württemberg and Rheinland-Pfalz (EU Database
Wines). No samples had been blended with any other variety, other
vintage, or wine from other regions. The wines derived from the
following German geographic wine regions: Baden (BAD), Württem-
berg (WT), Pfalz (RHP), Rheinhessen (RHH), and Mosel-Saar-Ruwer
(MSR). Most of the wines were from the vintage 2008 (n = 318) and
2009 (n = 265). Wines of the following grape varieties were analyzed:
Riesling (149), Pinot noir (Spaẗburgunder 79), Müller-Thurgau (56),
Pinot blanc (Weißburgunder, 61), Pinot gris (Grauburgunder 47),
Pinot Meunier (Schwarzriesling 20), Dornfelder (19), Gewürztraminer
(15), Silvaner (14), Lemberger (14), and some others in minor
numbers (Table 1).
Mixture Samples. Different mixtures of pure grape wines (100%)

were carried out in steps of 5−10% per volume in laboratory scale.
1H NMR Spectroscopic Analysis of Wine Specimens. For NMR

sample preparation, 100 μL of phosphate buffer (1 M KH2PO4, 0.1%
3-(trimethylsilyl)propionic acid sodium salt (TSP) as internal
standard, D2O, and NaN3) were added to 900 μL of wine, and the
pH was adjusted to 3.10 exactly (±0.02) (BTpH Combined Titration
pH Unit, Bruker BioSpin GmbH, Germany). From the prepared
mixture, 600 μL was filled into a 5 mm Wilmad NMR tube (Wilmad
Labglass Inc., Vineland, NJ, USA). NMR was performed under full
automation for the whole process on an AVANCE III 400 at Bruker
BioSpin GmbH, Rheinstetten, Germany, equipped with a 5 mm 1H/
D-TXI probehead with z-gradient, automated tuning and matching
accessory, and BTO-2000 for temperature control. Samples were
measured at 300.0 K. After automated sample transfer to the magnet
by a BACS-60 autosampler, a 5 min waiting period was applied for
temperature equilibration prior to the start of any NMR experiment.
Automated tuning and matching, locking and shimming, and
calibration of the 90° hard pulse P(90°) including adjustment of the
25 Hz presaturation pulse was done for each sample using the standard
Bruker routines ATMA, LOCK, TOPSHIM, and PULSECAL to
optimize NMR conditions. Four 1H NMR experiments were
performed for each sample in automation procedure.
Experiment 1 (ZGPR). Experiment 1 was a standard single-pulse

experiment with a continuous wave irradiation during the relaxation
delay (RD) for presaturation of the water resonance, that is, RD −
P(90°) − acquisition of the free induction decay (FID). A 25 Hz RF
field was used for presaturation. The relaxation delay and acquisition
time were set to RD = 4 s and AQ = ∼3.99 s, respectively, resulting in
a total recycle time of ∼7.99 s. After application of DS = 4 dummy
scans, NS = 8 free induction decays (FIDs) were collected into TD =
65536 (64K) complex data points using a spectral width SW =
20.5187 ppm and a receiver gain RG = 1. FIDs were multiplied with an
exponential function corresponding to LB = 1 Hz prior to Fourier
transformation.
Experiment 2 (NOESYGPPS). Experiment 2 comprised a one-

dimensional 1H NMR pulse sequence with suppression of the water
and the ethanol signals, that is, RD − tG1− P(90°) −4 μs − P(90°) −
tm − tG2− P(90°) − acquisition of the FID. The settings for the
parameters RD, P(90°), AQ, and TD were kept similar to the ones
from experiment 1; DS = 4 dummy scans and NS 32 scans were used,
and the mixing time tm was set to 10 ms. A shaped pulse was applied
during RD with a frequency spectrum of eight highly selective bands to
achieve highly selective suppression of the water signal and the seven

individual lines of the ethanol triplet and quartet, leaving the rest of the
spectrum undistorted. Therefore, the receiver gain could be increased
to RG = 16, resulting in a signal-to-noise increase per single scan of
∼6.8 compared to ZGPR. Additional defocusing gradients G1 and G2
were applied during tG1 and tG2 = 1 ms to improve the signal
suppression quality. FIDs were multiplied with an exponential function
corresponding to LB = 0.3 Hz prior to Fourier transformation.

Experiment 3 (JRES). Experiment 3 included a two-dimensional J-
resolved spectrum with multiple suppression applying the same shape
during RD as in NOESYGPPS, that is, RD − P(90°) − t0 − P(180°) −
t0 − acquisition of the FID incrementing t0 for acquisition in the second
dimension. RD, P(90°), and the receiver gain RG were kept similar to
the values in NOESYGPPS. After DS = 16 dummy scans, for each of
the 40 t0 increments NS = 4 FIDs were collected into TD = 16384
(16K) complex data points during an AQ of 0.6144500 and hence
covering a spectral width of SW = 16.6612 ppm. In F1, the 40 t0
increments corresponded to an acquisition time of 0.3837921s and a
spectral width of 0.1302 ppm (52.112 Hz), respectively.

Experiment 4 (QUANT). For quantification of the ethanol content, a
simple one-pulse experiment was applied with a 0.3 μs pulse and a
relaxation delay of 5 s. NS = 8 FIDs were collected into TD = 65536
(64K) complex data points using SW = 20.5187 ppm and RG = 1.
FIDs were multiplied with an exponential function corresponding to
LB = 0.3 Hz prior to Fourier transformation. All spectra were
processed in full automation using TOPSPIN 2.1, Bruker BioSpin
GmbH, Germany.

Quality Assurance. The following daily procedure was introduced
for quality assurance: (a) check of the temperature calibration for the
measurement temperature T = 300 K; (b) preparation and
measurement of two replicate samples from one specifically selected
wine used as standard reference throughout the study. Respective data
were used for control of the integrity of the overall automation
procedure, quality of preparation (from line positions and intensities),
and overall spectral quality (e.g., shimming, water suppression,
automated processing).

Multivariate Statistical Analysis, Chemometrics: Nontar-
geted Wine Analysis. Numerical Data Analysis Platform. For
metabolite identification, AMIX 3.8 in combination with the reference
spectral database BBIOREFCODE.2.0.0, both products of Bruker
BioSpin GmbH, Germany, was used. Statistical analysis was done
under MatLab 7.6 (R2008a) from MathWorks, Natick, MA, USA.
MatLab standard routines and routines from the MatLab Statistical
Toolbox were combined with in-house developed algorithms.

Data Reduction and Preprocessing of the 1H NMR Spectra. The
generation of input variables for statistical analysis was done via
bucketing of the NOESYGPPS spectra. Bucketing was done within
0.5−9.5 ppm, dividing the region into 500 sequential segments
(“bins”), obtaining an integral for each of them. The regions of acetic
acid and residual water and ethanol have been excluded (those regions
are irrelevant for the questions under investigation).

Multivariate Statistical Data Analysis. The potential to predict the
grape variety, the sample origin, and sample vintage from NMR data
was validated using a combination of established multivariate statistical
tools48,49 including principal components analysis (PCA), linear
discriminant analysis (LDA), and multivariate analysis of variance
(MANOVA) together with cross-validation (CV) embedded in a
Monte Carlo resampling approach (MC). As classification rule, a test
set object was assigned to the class with minimum distance between
test set object and respective class mean, that is, assignment according
to the nearest class mean (NCM).

PCA/LDA Subspace NCM Classification (PCA/LDA/NCM). First, a
model set was subjected to PCA for dimension reduction considering
only the subspace, which explains 99.9% of the variance in the data.
Then, LDA was applied to the projected model set to define a refined
subspace with maximum class separation. MANOVA provided the
dimensionality of the respective class means, that is, dimensionality of
the discriminating PCA/LDA subspace. NCM classification based on
comparison of distances between test-set objects and class means of
model set classes measured in the PCA/LDA subspace was used for
assignment of class membership.
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MC Embedded CV (MCCV). For validation of the predictivity of the
PCA/LDA/NCM, a CV with six randomly selected disjunct
subsequent test sets was done. To avoid any segmentation bias, CV
was repeated 100 times with new random segmentations for each CV
step. Finally, rates of correct and false class predictions were calculated
for each class to set up a confusion matrix.
Multiple Univariate Testing for Spectral Differences between

Different Wine Parameters. To select spectral regions with significant
differences between the different wine parameters a nonparametric
version of one-way analysis of variance (ANOVA), the Kruskal−Wallis
test was applied. This test evaluates whether the expectation values of
the means of different statistical samples are different. Unlike ANOVA,
the Kruskal−Wallis test does not assume the normality of the

statistical samples. Because the Kruskal−Wallis test operates on a
single variable, it has to be applied multiple times, scanning intensities
at each individual ppm value for spectral differences.

Targeted Analysis/Quantitation. Sixteen compounds were identi-
fied and quantitated in each wine spectrum: methanol, lactic acid, citric
acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, 3-
methylbutanediol, acetone, alanine, shikimic acid, caftaric acid, 2,3-
butanediol, glycerol, and ethanol. In-house developed Matlab routines
were used for signal detection and signal fitting. Absolute quantitation
was obtained by using an external reference sample and the PULCON
method.50

Figure 1. Reproducibility of 1H NMR in white wine, 27 replicates in overlay modus.

Figure 2. Proton spectrum of wine with 8-band suppression (details in magnification).
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■ RESULTS AND DISCUSSION
1H NMR Spectroscopy under Multiple Suppression of

Water and Ethanol, Stability, and Reproducibility. A wine
sample, which was repeatedly prepared the same way on each
of 27 successive days, showed good stability of NMR
spectroscopy with regard to shift position and intensity (Figure
1). The width of the TSP internal standard was <1 Hz. In the
27 replicate samples, the variability of the position of tartaric
acid was limited to ±2 Hz. The stability of the chemical shift is
the result of exact preparation of the pH of the sample (3.10 ±
0.02). Integration of 13C satellites of ethanol results in 1.6%
relative standard deviation (approximately 60 Hz off to ethanol
presaturation); the integrals of the regions of malic acid and α-
glucose have relative standard deviations of <1%.
The main ingredients of wine are water and ethanol (8.5−

15% vol). As for alcoholic beverages, suppression of both water
and ethanol signals was used for beer7 and wine51,52 analysis. In
this work we therefore applied a simultaneous saturation of the
resonances of water and ethanol (Bruker Pulse sequence
NOESYGPPS1D combined with an 8-fold suppression by
application of a respective shaped pulse) as previously
described.53 By presaturationg both of these main components
can be suppressed (8 frequencies) (Figure 2). The total NMR
methodology was carried out in full automation, demonstrating
that this experimental design is perfectly suited for fully
automated 1H NMR screening. NMR spectroscopy is not only
an instrument for qualitative analysis, screening, and finger-
printing (nontargeted analysis) but also a realistic tool for
quantitative analysis of suitable substances in one spectrum
(targeted analysis). The overall dynamic range of quantitative
NMR spectroscopy is in the range of 5−6 magnitudes.
In this study with 574 samples of wine from five wine-

growing areas of Germany with several grape varieties, the main
objective was not to find unambiguous information from the
NMR spectra deriving from single parameters quantitatively
(targeted analysis) for the differentiation of several distinguish-
ing features such as grape variety, origin, or vintage. However,
from the available data set some distinguishing information
could be derived for the varieties of the grapes, the geographical
origins, and the vintage of the wines by several steps of
multivariate statistical analysis (nontargeted wine analysis).
Predictivity was tested via MCCV on PCA/LDA/NCM

classification on the data sets. This multiple statistical approach
was used having been successful in previous studies.48,49 In
particular PCA was used for the dimension reduction, because
the number of variables (bins) contained in the bucket data was
extremely high for subsequent statistical treatments. In turn,
LDA was applied to PCA scores to identify the multivariate
subspace for maximum group (grape variety, geographic origin,
vintage) separation. Finally, to determine the level of class
predictivity, CV was carried out, whereby the data were
repetitively segmented in two sets, that is, a training set (used
to build a model) and a test set (used to test the prediction
ability), such that after completion of CV each spectrum was in
the test set once. It should be pointed out that the risk of
segmentation bias may occur in CV, and to overcome this
potential drawback, the CV was carried out multiple times
always starting from a new random segmentation, by using a
MC resampling approach. The assignment of samples
contained in the test sets to the grape variety classes, etc.,
was carried out by comparing distances between test objects

and class means (obtained by MANOVA using the NCM
method).54

Classification of Grape Varieties by 1H NMR Spec-
troscopy and Combined Multivariate Statistical Anal-
ysis. Due to enological practice according to protocol EU
2729/2000 the wines for EU Wine Database were micro-
vinified. Therefore, the grapes (25 kg) were destemmed and
crushed with no longer time of maceration. Thusly prepared
red wines resulted in a reddish color and not a dark red color
like wines fermented with a longer time of maceration (mash
fermentation, mash heating). Other wines from wine
manufacturers and estates were produced through regular
enological practice, resulting in specific red wine color. Because
of different intensities of red color two types of red wines of
each species (Pinot noir (Spaẗburgunder), Pinor Meunier
(Schwarzriesling), Dornfelder) could be recognized: the less
reddish wine (rose-́type, Spaẗburgunder 2 (Pinot noir))
showing less information in the aromatic part of the NMR
spectra (5.0−10.0 ppm) and the dark reddish wine (red wine
type, Spaẗburgunder 1 (Pinot noir)) (spectra not shown).
The first approach with multivariate statistical analysis

(MSA) was undertaken with five compounds quantitated
from the NMR spectra (targeted analysis): shikimic acid,
caftaric acid, 2,3-butanediol, glycerol, and ethanol. Multivariate
statistical analysis shows a clear differentiation of grape
varieties. The validation of the predictivity was done by the
PCA/LDA/NCM and CV embedded in a Monte Carlo
resampling approach (MC). The overall correct prediction
rate of the grape varieties Spaẗburgunder (SPB), Lemberger
(LEM), Silvaner (SIL), Pinot blanc/Pinot gris (Weißburg-
under/Grauburgunder) (WGB), Gewürztraminer (GT), Mül-
ler-Thurgau (MT), and Riesling (RIE) in the first case is 71%
(Figure 3). Wine compounds with the most differentiating

Figure 3. Confusion matrix associated with the predictive results of the
Monte Carlo embedded cross-validation (MCCV) analysis for the
discrimination of wine grape varieties: classification results for grape
variety when using quantification results of five compounds: shikimic
acid, caftaric acid, 2,3-butanediol, glycerol, and ethanol. Overall correct
prediction rate is 71%. The numbers show the probabilities of
predictive outcome for each pair of real and assigned group (diagonal
correspond to correct predictions) (RIE, Riesling; WGB, Weiss/
Grauburgunder; MT, Müller-Thurgau; SPB, Spaẗburgunder; LEM,
Lemberger; SIL, Silvaner; GT, Gewürztraminer).

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf400800d | J. Agric. Food Chem. 2013, 61, 5610−56195614



features are shikimic acid, caftaric acid (ester from caffeic acid
and tartaric acid), and 2,3-butanediol. The levels of these
parameters are demonstrated in Figure 4. Each compound is
normalized to the maximum mean of each group. The low
shikimic acid content of wines, especially of the Burgundy
grapes Pinot noir (Spaẗburgunder) and Pinor blanc/Pinot gris
(Weißburgunder/Grauburgunder), allows a prediction of grape
variety.24 Caftaric acid level is a primary indication to estimate
the oxidation levels that a wine has undergone. For example,
pressed wines undergo a high degree of oxidation. Red wines
show (Pinot noir (Spaẗburgunder), Lemberger) high levels of
caftaric acid resulting from fermentation processes (mash
fermentation, mash heating), whereas white wines present very
low levels of caftaric acid. Consequently, caftaric acid content is
primarily the result of wine technology and not correlated with
grape variety. Also, fermentation product ethanol and
fermentation byproduct glycerol are in similar ranges in wines
from different grape varieties and cannot be regarded as
discriminating factors for grape varieties.
In a second approach with multivariate statistical analysis

with 16 compounds quantitated from the NMR spectra
(targeted analysis), the prediction rate goes up to 80% (figure
not shown). Responsible for this higher degree of the
prediction rate are, in addition to the earlier mentioned
substances, the following compounds: methanol, lactic acid,
citric acid, malic acid, succinic acid, acetic acid, fumaric acid,
tartaric acid, 3-methylbutanediol, acetone, and alanine,
especially acids and amino acids. In must, arginine is an
important source of nitrogen for yeasts through fermentation.
Proline is the most abundant amino acid in wine and therefore
appears to be a marker for ripeness.36,55 In white wines from
Slovenia the use of the signals of seven amino acids resulted in a
good separation of wines according to the wine variety.11

Metabolic differences in wine from grape varieties from South
Korea resulted also partially from amino acids (alanine, proline)
and other compounds such as organic acids.45

The information on latent parameters such as grape variety,
origin, vintage, and technology is coded in multivariate patterns
of multiple parameters in the NMR spectra rather than in single
spectral markers. The complete spectrum involves more
information than all individual compounds together (synergetic

effect). In a final approach MSA from the complete NMR
spectra (0.5−9.5 ppm) achieved an overall correct prediction
rate of the grape varieties of 95%, distinctly higher than the
result coded from single compounds. Correct prediction of
classification of grape varieties in the wine panel was passed
with more than 14 samples per variety (Figure 5). Red wines

Pinot noir (Spaẗburgunder) (red wine type) and Lemberger
were predicted 98 and 100% correctly, respectively. Also, white
wines Pinot blanc/Pinot gris (Weißburgunder/Grauburg-
under), Gewürztraminer, Müller-Thurgau, and Riesling were
classified 93% correctly on average. The group Pinot blanc/
Pinot gris (Weißburgunder/Grauburgunder) was handled as
one variety because of their high similarity. The Silvaner wine
was classified only 64% correctly, with 21% to Riesling, 12% to

Figure 4. Visualization of concentrations regarding grape variety. Each compound is normalized to the maximum mean of each group.

Figure 5. Confusion matrix of the prediction results of grape varieties
in wine panel in a Monte Carlo cross-validation (RIE, Riesling; WGB,
Weiss/Grauburgunder; MT, Müller-Thurgau, SPB, Spaẗburgunder;
LEM, Lemberger; SIL, Silvaner; GT, Gewürztraminer). Experiment
used: 0.5−9.5 ppm, 500 buckets, ethanol/water/acetic acid excluded,
100 Monte Carlo, 6CV, 95.0% mean prediction (±1.6%, 3 times the
standard deviation).

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf400800d | J. Agric. Food Chem. 2013, 61, 5610−56195615



Müller-Thurgau, and 3% to Pinot blanc/Pinot gris (Weißburg-
under/Grauburgunder), respectively. No clear separation could
be achieved because only 14 samples were analyzed.
The information for discrimination of patterns is located in

several parts of the NMR spectra. In general, class differences
found in the spectra were typically attributed to subtle intensity
differences and not due to the presence or absence of class-
specific signals. Spectroscopic regions responsible for the
discrimination of white wine varieties can be identified by the
Kruskal−Wallis test (Figure 6).
If the grape variety is labeled, mixtures of different grapes in

wines are legal up to 15% according to European wine

regulation. The labeling of grape varieties is facultative but it is
very conventional and important information for customers of
German wines and most wines worldwide. Different mixtures of
pure grape wines (100%) in laboratory scale were carried out in
steps of 5−10% per volume with Riesling versus Pinot blanc/
Pinot gris (Weißburgunder/Grauburgunder) (white−white
blend). A clear separation of the mixtures could be achieved
in the model Riesling versus Pinot blanc/Pinot gris (Weißburg-
under/Grauburgunder) with 100 and 99%, respectively. With
LDA only the mixtures 40, 50, 60, and 70% in the system
Riesling versus Pinot blanc/Pinot gris (Weißburgunder/
Grauburgunder) are discarded. The other mixtures are assigned

Figure 6. Identification of spectroscopical regions responsible for discrimination of white wine varieties. p values according to Kruskal−Wallis test,
are symbolized as gray scale (white, high p value; black, low p value). Low p values indicate spectral regions with information for grape variety.

Figure 7. (A) Predictivity of origin of German wines of different wine-producing regions. All information is based on 1H NMR spectrum of 548
samples (BAD, Baden; WT, Württemberg; RHH, Rheinhessen; MSR, Mosel, Saar, Ruwer; RHP, Rheinpfalz). Experimental information: 0.5−9.5
ppm, 500 buckets, ethanol/water/acetic acid excluded, 100 Monte Carlo, 6CV, 89.5% mean prediction (±2.1%, 3 times the standard deviation). (B)
German wine-producing regions. Note that Baden and Württemberg are next to one another.
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to the main groups (figure not shown). These results give a
good prediction of grape varieties also in mixtures of different
grape wines as shown in the model system.
Classification of the Geographic Origin by 1H NMR

Spectroscopy and Combined Multivariate Statistical
Analysis. The geographic origin of wine is one of the most
important parameters not only for customer acceptance but
also for worldwide trading. Wines are differentiated all over the
world in wine with and without geographical origin. According
to European wine regulations (Commission regulation (EC)
No. 607/2009) the origin of wine is differentiated in protected
designations of origin (gU) such as Qualitaẗswein in Germany,
Appellation d’Origine Controleé AOC in France, Denomi-
nacioń de Origen DO in Spain, and Denominazione di Origine
Controllata DOC in Italy and protected geographical indication
(ggA), a national geographic indication. The wine quality is also
intensely influenced by the geographic region where the grapes
are grown by environment parameters such as soil geology and
composition, climate, water availability, and light exposure. The
French expression terroir summarizes all natural and cultural
parameters that have an influence on the authenticity and
identity of the product such as climate (temperature, rainfall,
microclimate, insolation, solar energy, ecology), soil (geology,
topography, water management, hillside situation), and grape
culture (grape variety, grape education, density of plants, yield,
enology). The geographic origin of all wines under
investigation (n = 548) from the largest German wine-
producing regions Rheinpfalz, Rheinhessen, Mosel, Saar,
Ruwer, Baden, and Württemberg could be predicted 89.5%
correctly on average by means of chemometrics. Most of the
regions were classified >90% correctly (Figure 7A). Wines from
Württemberg were correlated 59% correctly, but 37% were
correlated to the neighboring wine-producing region, Baden.
These wine-producing areas are next to one another (Figure
7B). In agreement with the studies on Slovenian wines,11 also
wines from various southern Italy wine-producing regions
(Basilicata, Campania) could be differentiated on the basis of
the contents in glycerol, butylene glycol, and succinic acid.42

Three different Aglianico red wines from the Campania region
of Italy from different vineyards characterized by various
microclimatic and pedological properties were differentiated
from each other by six metabolites: α-hydroxyisobutyrate, lactic
acid, succinic acid, glycerol, α-fructose, and β-D-glucuronic
acid.57 Most of these compounds are mainly of microbiological
origin and may be influenced by microbiolocal activity
corresponding to different microclimate (e.g., β-D-glucuronic
acid from Botrytis cinerea mold). A good separation of
international wines (France, California, Australia, South
Korea) from Cabernet Sauvignon, Shiraz, and Campbell Early
grapes could be differentiated according to grape varieties. The
metabolites contributing to the separation were assigned to be
2,3-butanediol, lactate, acetate, proline, succinate, malate,
glycerol, tartrate, glucose, and phenolic compounds. For the
geographical separation of these international wines mainly the
different level of proline was responsible.44 In metabolomic
studies on geographical grapes and their wines from different
regions of South Korea, the discriminatory compounds among
the wines were sugars and acids but also compounds resulting
from fermentation such as glycerol and 2,3-butanediol.34 1H
NMR has been used for metabolomic analysis of Riesling and
Müller-Thurgau white wines from the German Palatinate
region.40 The high-quality wines were characterized by elevated
levels of compounds such as proline, 2,3-butanediol, malate,

quercetin, and catechin. Riesling wines were characterized by
higher levels of catechin, caftarate, valine, proline, malate, and
citrate, whereas compounds such as quercetin, resveratrol,
gallate, leucine, threonine, succinate, and lactate were found
discriminating for Müller-Thurgau. The wines from the 2006
vintage were dominated by leucine, phenylalanine, citrate,
malate, and phenolics, whereas valine, proline, alanine, and
succinate were predominantly present in the 2007 vintage.

Classification of the Year of the Vintage by 1H NMR
Spectroscopy and Combined Multivariate Statistical
Analysis. Growth conditions are very important for the overall
quality of wines. Wine quality is dependent first of all on the
climate where the grapes are growing (terroir, rainfall, humidity,
hours of sun, temperature day/night, etc.) and secondly on
technological influences. If the year of vintage gives no good
conditions for growth and quality of the grapes, the product can
only be marginally influenced by technological and enological
means. Therefore, the vintage is important information both for
trading and customers. Labeling the year of vintage is facultative
according to European wine regulations, but is normally
declared also in wines from all over the world. In accordance
with European wine law mixtures with other wines than the
declared year of vintage from the same wine-producing region
are possible up to 15%. The classification of the vintage of all
analyzed wines (n = 583) from different grape varieties,
different enological technologies, and different wine-growing
regions by means of chemometrics of the whole NMR spectra
data resulted in a correct prediction of 97 and 96% of vintage
2008 (n = 318) and 2009 (n = 265), respectively (data and
figure not shown). These investigations resulted from NMR
data of the whole spectra where also different species of
compounds therefore are responsible. Differences in metabolic
fingerprints of grape berries such as sugars, organic acids, and
amino acids correlated to differences between vintages in
Bordeaux grapevine-growing areas.56 Whereas amino acids are
responsible for differences in wine varieties, also with the
signals of glycerol, butylene glycol, and succinic acid could be
achieved the separation of wines from the coastal and the
continental part of Slovenia.11 The chemometric classification
of wines according to their phenolic profile allows discrim-
ination between Greek wines from different wineries of the
same wine-producing zone and between different vintages for
wines of the same variety.32

With the present study in a targeted and nontargeted
approach with 1H NMR spectroscopy coupled with several
steps of multivariate statistical analysis, wines from the southern
and southwestern wine production regions of Germany could
be differentiated by grape varieties with a high degree of
predictivity. Also, mixtures of wines from different grapes were
separated. In addition, the year of the vintage and the wine-
producing region were separated with high degrees of
differentiation. The information on latent parameters such as
grape variety, geographical origin, and vintage is coded in
multivariate patterns of multiple parameters in the NMR
spectra rather coded in single spectral markers. Each NMR
spectrum could be regarded as the individual “fingerprint” of a
wine sample, which includes information about variety, origin,
vintage, physiological state, technological treatments, and
others.
It is proposed to establish a model of all German wines in a

database for wines. Due to the linear range of NMR spectra
(5−6 magnitudes) it is also possible to quantitate individual
compounds of wine only in one spectrum.
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